Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

10039

Accredited to ISO/IEC 17025:2017

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Unit 8

New Vision Business Park

Glascoed Road

St Asaph LL17 0LP Contact: Ms Farhana Khan Tel: +44 (0)1492 643 060

E-Mail: Farhana.Khan@TestEquity.com

Website: www.TestEquity.co.uk

Calibration performed at the above address only

Calibration and Measurement Capability (CMC)

Campration and incucaroment capability (Circ)					
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks		
	Values and uncertainties listed below are applicable for the calibration of both measurement instruments and for instruments with an output. the method used is by direct comparison unless otherwise stated in the remarks column				
ELECTRICAL					
DC Voltage					
Generation	0 V to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V 330 V to 1020 V	16 μV/V + 3.2 μV 9 μV/V + 15 μV 9 μV/V + 180 μV 14 μV/V + 2.4 mV 14 μV/V + 8.1 mV	These values can be generated for the calibration of measuring instruments		
Measurement	0 V to 202 mV 202 mV to 2.02 V 2.02 V to 20.2 V 20.2 V to 202 V 202 V to 1050 V	0.41 μV 3.14 μV 7.80 μV 1.70 mV 2.0 mV	Outputs of instruments within these values can be measured to the listed uncertainties		
Resistance					
Generation	0 Ω to 11 Ω 11 Ω to 33 Ω 33 Ω to 110 Ω 110 Ω to 330 Ω 330 Ω to 1.1 k Ω	46 $\mu\Omega/\Omega$ + 5.6 mΩ 35 $\mu\Omega/\Omega$ + 3.1 mΩ 33 $\mu\Omega/\Omega$ + 3.7 mΩ 33 $\mu\Omega/\Omega$ + 3.7 mΩ 33 $\mu\Omega/\Omega$ + 470 mΩ	These values can be generated for the calibration of measuring instruments		
	1.1 kΩ to 3.3 kΩ 3.3 kΩ to 11 kΩ 11 kΩ to 33 kΩ 33 kΩ to 110 kΩ 110 kΩ to 330 kΩ	33 μ Ω / Ω + 670 m Ω 33 μ Ω / Ω + 430 m Ω 33 μ Ω / Ω + 1.8 Ω 33 μ Ω / Ω + 1.7 Ω 37 μ Ω / Ω + 6.2 Ω			
	330 kΩ to 1.1 MΩ 1.1 MΩ to 3.3 MΩ to 11 MΩ to 31 MΩ 11 MΩ 13 MΩ to 33 MΩ 33 MΩ to 110 MΩ	$37 \mu\Omega/\Omega + 2.0 k\Omega$ $70 \mu\Omega/\Omega + 5.7 k\Omega$ $151 \mu\Omega/\Omega + 3.0 k\Omega$ $290 \mu\Omega/\Omega + 7.3 k\Omega$ $580 \mu\Omega/\Omega + 16 k\Omega$			

Assessment Manager JW7 Page 1 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
Resistance (continued) Measurement	0 Ω to 2.02 Ω 2.02 Ω to 20.2 Ω 20.2 Ω to 202 Ω 202 Ω to 2.02 k Ω 2.02 k Ω to 20.2 k Ω 2.02 k Ω to 20.2 k Ω 20.2 k Ω to 202 k Ω 202 k Ω to 2.02 M Ω 2.02 M Ω to 20.2 M Ω 2.02 M Ω to 20.2 M Ω	14.6 $\mu\Omega$ 38.3 $\mu\Omega$ 216 $\mu\Omega$ 1.50 $m\Omega$ 20.0 $m\Omega$ 290 $m\Omega$ 4.6 Ω 80 Ω 5.1 $k\Omega$	Outputs of instruments within these values can be measured to the listed uncertainties
DC Current			
Generation	0 A to 330 μA 330 μA to 3.3 mA 3.3 mA to 33 mA 33 mA to 330 mA 330 mA to 3.3 A 3.3 A to 11 A 11 A to 20 A	116 μA/A + 20 nA 78 μA/A + 90 nA 115 μA/A + 800 nA 80 μA/A + 8 μA 290 μA/A + 251 μA 400 μA/A + 1.0 mA 0.12 % + 2.5 mA	These values can be generated for the calibration of measuring instruments
Measurement	0 A to 1,0 mA 1.0 mA to 10 mA 10 mA to 100 mA 100 mA to 1.0 A 1.0 A to 3.0 A 3.0 A to 10.0 A 10.0 A to 30.0 A	0.30 nA 12.0 nA 55.0 nA 1.3 μA 201 μA 496 μA 649 μA	Outputs of instruments within these values can be measured to the listed uncertainties
AC Voltage			
Generation	10 Hz to 45 Hz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 45 Hz to 1 kHz	0.060 % + 5.3 μV 0.023 % + 14 μV 0.020 % + 103 μV 0.020 % + 1.3 mV	These values can be generated for the calibration of measuring instruments
	33 V to 330 V 330 V to 1 kV	0.015 % + 12 mV 0.023 % + 30 mV	
	45 Hz to 10 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V	0.010 % + 5.2 µV 0.011 % + 12 µV 0.012% +132 µV 0.012 % + 1.5 mV	
	1 kHz to 10 kHz 33 V to 330 V	0.015 % + 11 mV	

Assessment Manager: JW7 Page 2 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
AC Voltage (continued)	10 kHz to 20 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	10 kHz to 20 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	These values can be generated f@20ecali5r2tion of measuring frost20ecali5r2tion of measuring frost20ecali5r2tion of measuring frost20ecali5r2tion of measuring frost20ecalifor
	20 kHz to 50 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	20 kHz to 50 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	0.080 % + 6.4 μV 0.030 % + 11 μV 0.023 % +96 μV 0.027 % + 1.0 mV 0.023 % + 10 mV
	50 kHz to 100 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	50 kHz to 100 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	0.27 % + 10 μV 0.062 % + 27 μV 0.054 % + 0.13 mV 0.070 % + 1.7 mV 0.15 % + 41 mV
	100 kHz to 500 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V	100 kHz to 500 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V	0.62 % + 39 μV 0.15 % + 60 μV 0.19 % + 0.55 mV
AC Voltage Measurement	1Hz to 1 kHz 30 μV to 10 mV 10 mV to 100 mV 100 mV to 1.0 V 1.0 V to 10 V 10 V to 100 V	2.2 μV 2.5 μV 67 μV 182 μV 2.0 mV	Outputs of instruments within these values can be measured to the listed uncertainties
	1 kHz to 30 kHz 30 μV to 10 mV 10 mV to 100 mV 100 mV to 1.0 V 1.0 V to 10 V	2.2 μV 2.7 μV 211 μV 283 mV	
	30 kHz to 60 kHz 100 mV to 1 V 1 V to 10 V	554 μV 844 μV	
	60 kHz to 100 kHz 100 mV to 1 V	565.2 μV	

Assessment Manager: JW7 Page 3 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
AC Current			
Generation	45 Hz to 1 kHz 30 μA to 3.3 mA 3.3 mA to 33 mA 3.3 mA to 330 mA 330 mA to 1.1 A 1.1 A to 3.3 A 1 kHz to 5 kHz 30 μA to 3.3 mA 3.3 mA to 330 mA 330 mA to 1.1 A 1.1 A to 3.3 A 5 kHz to 10 kHz 30 μA to 3.3 mA 3.3 mA to 33 mA 3.3 mA to 330 mA 3.3 mA to 33 mA 3.3 mA to 3.3 mA 3.3 mA to 1.1 A 1.1 A to 3.3 A 10 kHz to 30 kHz 30 μA to 3.3 mA 3.3 mA to 33 mA 3.3 mA to 33 mA 3.3 mA to 33 mA 3.3 mA to 30 mA 3.3 mA to 5.1 A 3.3 A to 11 A 45 Hz to 100 Hz 100 Hz to 1 kHz 1 kHz to 5 kHz 11 A to 20.5 A 45 Hz to 100 Hz 100 Hz to 1 kHz	0.140 % + 700 nA 0.06 % + 3.3 μA 0.06 % + 27 μA 0.08 % + 0.17 mA 0.24 % + 0.20 mA 0.29 % + 3.3 μA 0.12 % + 2.8 μA 0.14 % + 60 μA 0.15 % + 230 μA 0.87 % + 1.2 mA 0.72 % + 3.2 μA 0.30 % + 5.8 μA 0.30 % + 5.8 μA 0.30 % + 6.0 mA 3.6 % + 6.0 mA 1.5 % + 4.0 μA 0.60 % + 6.6 μA 0.60 % + 6.6 μA 0.60 % + 240 μA 3.5 % + 6.0 mA 0.15 % + 3.8 mA 0.15 % + 3.8 mA 0.17 % + 8.3 mA 0.22 % + 8.4 mA	These values can be generated for the calibration of measuring instruments
AC Current Measurement	1 kHz to 5 kHz 10 Hz to 1 kHz 10 mA to 100 mA 100 mA to 1 A 1 kHz to 5 kHz 10 mA to 100 mA 100 mA to 1 A	 4.4 % + 8.4 mA 7.0 μA 361 μA 7.0 μA 608 	Outputs of instruments within these values can be measured to the listed uncertainties

Assessment Manager: JW7 Page 4 of 12

Schedule of Accreditation issued by ited Kingdom Accreditation Serv

United Kingdom Accreditation Service
2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
AC Power			
Unity PF to 0.25 PF			
	45 Hz to 65 Hz 10 mV to 1 kV		
	3.3 mA to 20.5 A	0.50 %	
Capacitance			
Sourcing by simulation	1.1 nF to 3.3 nF 3.3 nF to 11 nF 11 nF to 33 nF 33 nF to 110 nF 110 nF to 330 nF 330 nF to 1.1 µF 1.1 µF to 3.3 µF 3.3 µF to 11 µF 11 µF to 33 µF 33 µF to 110 µF 110 µF to 330 µF 330 µF to 1.1 mF 1.1 mF to 3.3 mF 3.3 mF to 11 mF 11 mF to 33 mF	0.39 % + 8 pF 0.19 % + 12 pF 0.19 % + 112 pF 0.29 % + 0.40 nF 0.19 % + 1.0 nF 0.19 % + 12 nF 0.31 % + 48 nF 0.35 % + 127 nF 0.35 % + 0.25 μF 0.35 % + 2.5 μF 0.52 % + 12 μF 0.58 % + 25 μF	These values can be simulated for the calibration of measuring instruments

Assessment Manager: JW7 Page 5 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
0 V to 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 11 V 11 V to 130 V	0.040 % + 31 µV 0.039 % + 31 µV 0.039 % + 120 µV 0.039 % + 200 µV 0.039 % + 2.0 mV	Into 1 MΩ
0 V to 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 6 V	0.19 % + 31 μV 0.19 % + 33 μV 0.19 % + 26 μV 0.19 % + 26 mV	Into 50 Ω
0 V to 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 6 V	0.19 % + 62 μV 0.19 % + 224 μV 0.19 % + 4.4 mV 0.19 % + 9.8 mV	Into 50 Ω
Ref set point 5 mV to 5.5 V 50 kHz to 300 MHz 100 kHz to 600 MHz	3.9 % 3.9 %	
250 ps 5 mV to 2.5 V peak	78 ps	
40 Ω to 60 Ω 500 k Ω to 1.5 M Ω	0.077 % + 10 m Ω 0.077 % + 100 m Ω	
2 ns to 5 ns 5 ns to 20 ns 20 ns to 50 ns 50 ns to 20 ms 20 ms to 100 ms 100 ms to 1 s 1 s to 5 s	11 fs 44 fs 110 fs 44 ns 12 µs 0.80 ms 19 ms	
5 pF to 50 pF	3.9 % + 0.47 pF	
	0 V to 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 11 V 11 V to 130 V $0 \text{ V to 25 mV} \\ 25 \text{ mV to 110 mV} \\ 25 \text{ mV to 110 mV} \\ 110 \text{ mV to 2.2 V} \\ 2.2 \text{ V to 6 V} \\ 0 \text{ V to 25 mV} \\ 25 \text{ mV to 110 mV} \\ 110 \text{ mV to 2.2 V} \\ 2.2 \text{ V to 6 V} \\ \text{Ref set point 5 mV to 5.5 V} \\ 50 \text{ kHz to 300 MHz} \\ 100 \text{ kHz to 600 MHz} \\ 250 \text{ ps} \\ 5 \text{ mV to 2.5 V peak} \\ 40 \Omega \text{ to 60 } \Omega \\ 500 \text{ k } \Omega \text{ to 1.5 M } \Omega \\ \text{2 ns to 5 ns} \\ 5 \text{ ns to 20 ns} \\ 20 \text{ ns to 50 ns} \\ 50 \text{ ns to 20 ms} \\ 20 \text{ ms to 100 ms} \\ 100 \text{ ms to 1 s} \\ 1 \text{ s to 5 s} \\ $	Uncertainty ($k = 2$) 0 V to 25 mV 0.040 % + 31 μV 25 mV to 110 mV 0.039 % + 31 μV 110 mV to 2.2 V 0.039 % + 120 μV 2.2 V to 11 V 0.039 % + 2.00 mV 0 V to 25 mV 0.19 % + 31 μV 25 mV to 110 mV 0.19 % + 33 μV 110 mV to 2.2 V 0.19 % + 26 μV 2.2 V to 6 V 0.19 % + 62 μV 0 V to 25 mV 0.19 % + 62 μV 2.2 V to 6 V 0.19 % + 224 μV 100 mV to 2.2 V 0.19 % + 4.4 mV 2.2 V to 6 V 0.19 % + 9.8 mV Ref set point 5 mV to 5.5 V 50 kHz to 300 MHz 100 kHz to 600 MHz 3.9 % 250 ps 78 ps 5 mV to 2.5 V peak 0.077 % + 10 m Ω 40 Ω to 60 Ω 0.077 % + 100 m Ω 2 ns to 5 ns 11 fs 5 ns to 20 ns 44 fs 20 ns to 50 ns 110 fs 50 ns to 20 ms 44 fs 20 ms to 100 ms 12 μs 100 ms to 1 s 0.80 ms 1 s to 5 s 19 ms

Assessment Manager: JW7 Page 6 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
Insulation Testers			
Continuity	0 Ω to 100 m Ω 100 m Ω to 500 m Ω 0.5 Ω to 1 Ω 1 Ω to 5 Ω 5 Ω to 200 Ω 200 Ω to 10 k Ω	4.5 mΩ 6.5 mΩ 8.0 mΩ 25 mΩ 0.80 Ω 8.0 Ω	
High Resistance	10 kΩ to 1 MΩ 1 MΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 10 GΩ	0.20 % 0.30 % 0.65 % 1.0 %	Uncertainty Increases by 0.10 % per 200 V above 500 V
Test Voltage Measurement	0 V to 2 kV DC 10 kΩ to 1 MΩ 1 MΩ to 10 GΩ	0.8 % + 2.6 V 0.8 % + 4.5 V	
Line / Loop Impedance Testers			
Resistance Nominal values	25 mΩ 50 mΩ 100 mΩ 330 mΩ 500 mΩ 1 Ω 1.8 Ω 5 Ω 10 Ω 18 Ω 50 Ω 100 Ω 180 Ω 500 Ω 1 kΩ 1.8 kΩ 0.05 A 0.5 A 0.5 A 0.5 A 0.5 A 0.5 A	$4.0 \text{ m}\Omega$ $4.5 \text{ m}\Omega$ $4.0 \text{ m}\Omega$ $5.5 \text{ m}\Omega$ $6.5 \text{ m}\Omega$ $8.0 \text{ m}\Omega$ $15.5 \text{ m}\Omega$ $25 \text{ m}\Omega$ $80 \text{ m}\Omega$ 0.25Ω 0.40Ω 0.80Ω 0.20Ω 0.80Ω	Outputs of instruments within these values can be measured to the listed uncertainties

Assessment Manager: JW7 Page 7 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
RCD Testers			
Timing	10 ms to 5 s	0.02 % + 2.7 ms	
Current			
0.5 x I and 1 x I Mode	3 mA to 30 mA 30 mA to 300 mA 300 mA to 3000 mA	0.80 % + 60 μA 0.80 % + 0.60 mA 0.80 % + 6.0 mA	
1.4 x I and 2 x I Mode	3 mA to 30 mA 30 mA to 300 mA 300 mA to 1500 mA	1.6 % + 60 µA 1.6 % + 0.60 mA 1.6 % + 6.0 mA	
5 x I Mode	3 mA to 30 mA 30 mA to 300 mA 300 mA to 600 mA	4.0 % + 60 μA 4.0 % + 0.60 mA 4.0 % + 6.0 mA	
Leakage Testers			
Current			
Passive/Differential/Substitute Modes	0.1 mA to 30 mA	0.30 % + 2 μA (ac + dc) rms	
Active Mode	0.1 mA to 30 mA	0.30 % + 1.3 μA (ac + dc) rms	
Touch Voltage	250 V Range	5.0 % + 3.0 V	
Portable Appliance Testers			
Earth / Ground Bond Resistance. Nominal values At 50 Hz to 60 Hz	$\begin{array}{c} 25 \text{ m}\Omega \\ 50 \text{ m}\Omega \\ 100 \text{ m}\Omega \\ 330 \text{ m}\Omega \\ 500 \text{ m}\Omega \\ 1 \Omega \\ 1.8 \Omega \\ 5 \Omega \\ 10 \Omega \\ 18 \Omega \\ 50 \Omega \\ 100 \Omega \\ 188 \Omega \\ 500 \Omega \\ 1088 \Omega \\ 108$	$4.0 \text{ m}\Omega$ $4.5 \text{ m}\Omega$ $4.0 \text{ m}\Omega$ $5.5 \text{ m}\Omega$ $6.5 \text{ m}\Omega$ $8.0 \text{ m}\Omega$ $16 \text{ m}\Omega$ $25 \text{ m}\Omega$ $47 \text{ m}\Omega$ $80 \text{ m}\Omega$ 0.25Ω 0.40Ω 0.80Ω 0.80Ω 0.80Ω 0.80Ω 0.80Ω	

Assessment Manager: JW7 Page 8 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
Earth / Ground Bonding Current At 50 Hz to 60 Hz	0.05 A 0.5 A 3.2 A 10 A 20 A	1.2 % + 1.7 mA 1.2 % + 11 mA 1.2 % + 55 mA 1.2 % + 0.12 A 1.2 % + 0.28 A	
Insulation Resistance	10 kΩ to 1 MΩ 1 MΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 10 GΩ	0.16 % 0.27 % 0.62 % 0.95 %	Uncertainty Increases by 0.10 % per 200 V above 500 V
Test Voltage	0 V to 2 kV DC 10 kΩ to 1 MΩ 1 MΩ to 10 GΩ	0.80 % + 2.6 V 0.80 % + 4.5 V	
Continuity	100 m Ω to 500 m Ω 0.5 Ω to 1 Ω 1 Ω to 5 Ω 5 Ω to 200 Ω 200 Ω to 10 k Ω	6.5 mΩ 8.0 mΩ 25 mΩ 0.78 Ω 7.8 Ω	
HIPOT/HV TESTERS			
HVDC Voltage	0.1 kV to 1.0 kV	0.23 % + 4.5 V	
HVAC Peak Voltage	50 Hz to 60 Hz 0.1 kV to 1.0 kV	0.40 % + 4 V	
DC Leakage Current	0 A to 300 μA 0.3 mA to 3 mA 3 mA to 30 mA 30 mA to 300 mA	0.23 % + 0.20 μA 0.16 % + 1.3 μA 0.16 % + 12 μA 0.16 % + 120 μA	
AC Leakage Current	20 Hz to 400 Hz 0 A to 300 µA 0.3 mA to 3 mA 3 mA to 30 mA 30 mA to 300 mA	0.23 % + 0.34 μA 0.16 % + 1.5 μA 0.16 % + 18 μA 0.16 % + 130 μA	

Assessment Manager: JW7 Page 9 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
RF MEASUREMENTS			All RF measurements are for a well matched 50 Ω source or load unless otherwise stated.
Voltage Reflection Coefficient	1.0 to 0.1 10 MHz to 6 GHz 6 GHz to 15 GHz 15 GHz to 18 GHz	0.020 0.030 0.040	Uncertainties apply to precision connectors.
Frequency			May be reported as time (1/f)
Generation			for repetitive events.
Specific Value	10 MHz	6.0 in 10 ¹²	GPS Time and frequency
Measurement			Reference Receiver
Specific Value	10 MHz	6.9 in 10 ¹²	
Other Values	1 Hz to 10 Hz 10 Hz to 100 Hz 100 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 100 kHz 100 MHz to 160 MHz 160 MHz to 1.3 GHz 1.3 GHz to 10 GHz 10 GHz to 18 GHz 18 GHz to 26.5 GHz	2.2 in 10 ⁷ 1.4 in 10 ⁷ 1.5 in 10 ⁸ 3.8 in 10 ⁸ 3.5 in 10 ⁹ 1.0 in 10 ¹⁰ 3.0 in 10 ¹⁰ 7.5 in 10 ¹⁰ 1.4 in 10 ⁹ 4.7 in 10 ⁹	
Power			
I mW reference	1 mW at 50 MHz	0.004 mW	
Ranges	9 kHz to 6 GHz 200 pW to 40 μW 20 nW to 4 mW 2 μW to 200 mW	1.5 % 1.4 % 1.4 %	
	2 nW to 40 µW 200 nW to 40 mW 2 µW to 2 W	5.3 % 2.2 % 2.4 %	
Attenuation	0 dB to 90 dB 50 MHz to 18 GHz	0.10 dB	

Assessment Manager: JW7 Page 10 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
RF MEASUREMENTS Continued			
Calibration Factor			
	75 % to 110 % 9 kHz 1MHz 1 MHz to 1 GHz 1 GHz to 6 GHz	0.62 % (Cal Factor) 0.64 % 0.84 %	For power sensor range of 9 kHz to 6KHz
	75 % to 110 % 10 MHz to 1 GHz 1 GHz to 6 GHz 6 GHz to 12 GHz 12 GHZ to 18 GHz	0.66 % 0.85 % 0.98 % 1.5 %	For power sensor range of 10 MHz to 18 GHz
Amplitude			
Modulation (AM)	10 Hz to 10 kHz 150 kHz to 10 MHz	2.4 % of reading	
	50 Hz to 50 kHz 10 MHz to 1300 MHz	1.4 % of reading	
AM Distortion			
	10 Hz to 50 kHz 150 kHz to 1300 MHz	0.50 %	
Frequency			
Modulation (FM)	20 Hz to 10 kHz 250 kHz to 10 MHz	2.4 % + 40 Hz	Frequency Modulation - Carrier frequency range 10 MHz to 1300 MHz
	50 Hz to 100 kHz		Modulation frequency range
	10 MHz to 1300 MHz	1.2 % + 17 Hz	10 Hz to 100 kHz
FM Distortion	20 Hz to 100 kHz		
	150 kHz to 1300 MHz	0.20 %	
Harmonic Content	Carrier Frequency 1 MHz to 13 GHz Harmonic Frequency		Maximum CW amplitude +15 dBm; minimum harmonic level -80 dBc
	2 MHz to 26 GHz	0.62 dB	ICVCI -00 UDC

END

Assessment Manager: JW7 Page 11 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 010 Issue date: 23 July 2025

Calibration performed at main address only

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Assessment Manager: JW7 Page 12 of 12